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I NTR OD U CTI 0 N 

In a previous article with J. E. Lind, we describe PVT data for liquid mercury 
obtained over the temperature and pressure ranges 30 to 150°C and 0 to 
8,000 bars respectively.’ These data were fitted by expressing pressure as a 
single quadratic equation in density and temperature following a previous 
e~a rnp le .~ .~  Using this equation, in conjunction with the calorimetric 
properties of Douglas, Ball and Ginnings; we then computed thermo- 
dynamic properties. 

At that time we attempted to interpret the equation of state in terms of the 
hard-sphere model-not very satisfactorily since, although we made a first 
order allowance for the variation of hard-sphere diameter with temperature 
and pressure, there did not appear to be an adequate method of taking care of 
higher order effects, though this has been attempted.’ 

Subsequently, computer-derived equation-of-state data became available 
for the soft-sphere model for various values of the soft-sphere exponent n.6 
In this article, an attempt is made to apply this model to the experimental data 
and thereby extract quantitative information about the components making 
up the internal energy. 

Previous approaches at analysing the equation of state of mercury have 
been chiefly concerned with correlating experimental data and make use of, 
for example, the Huddleston equation’ which has a quasi theoretical basis 
and whose parameters are ostensibly related ‘to intermolecular forces. In 

t Present address: U.S. Coast Guard Research and Development Center, Groton, Conn. 
06340, U.S.A. 
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284 T. GRINDLEY 

contrast, this approach is mainly concerned with testing the applicability of a 
specific molecular model and deducing quantitatively the molecular param- 
eters. 

SOFT- S P H ERE M 0 D EL 

Suppose that the soft-sphere or repulsive potential has the form c(c/r)n and 
that the attractive potential may be represented by a sum of potentials pi 
having the form q(c/r)*I. It then follows that the internal energy is given by: 

where (K) is the canonical ensemble average kinetic energy of atoms and 
free electrons and (0,) and ci (ai) the corresponding quantities for the 
potential energy. It is not thought that the simplifying assumption ofpairwise 
additive energy will materially affect the general conclusions reached in 
applying the model. See, for example, Rowlinson for a discussion of this 
approximation.' 

The virial theorem gives: 

2(K) = 3PV - n(@,) - 1 rni(ai) (2) 
i 

Eliminating (Q,) from (1) and (2) and differentiating yields: 
d ( K )  = ((3V(dP/dT), - nCy)/(2 - n)) d T  

+ (((3 + n)P + 3V(dP/aV), - nT(dP/dT), 

+ C (mi - n)(d(@i>/dV~)/(2 - n)) dV (3) 

This neglects the differential of (ai) with respect to temperature; but it is 
thought to be a fair approximation since the potentials 'p i  depend on lower 
powers of r than cp,. 

Since(K) = (K,) + (K,) = (3/2)RT + (K,),where(K,)istheatomic 
and ( K , )  the electronic kinetic energy, equating coefficients of dT in Eq. (3) 
gives : 

1 

where C; is the electronic contribution to the total specific heat C,. 
Equation (4) gives a means of empirically evaluating n from the experi- 

mentally determined quantities V(dP/dT),, C ,  and Ct.  This has been done 
for two points at the extremes of the author's P V T  data, at 30°C 8,000 bars 
and 150"C, 0 bars respectively. At the former points, I/ = 14.41 cm3/g - atom, 
C, = 24.63 J/g . atom . C, (dP/dT), = 4.77 J/cm3 . C, C t  = 0.57 J/g . 
atom . C9 giving n = 15.6. At the latter point, V = 15.16 cm3/g- atom, 
C, = 22.89 J/g. atom. C, (dP/dT),  = 3.83 J/cm2 . C ,  Ct = 0.80 J/g.atom.C 
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EQUATION OF STATE OF LIQUID MERCURY 285 

giving n = 15.5. The range has been extended from the melting point to the 
boiling point by using the tabulated values of Vukalovich et At the 
former point, n = 15.1 and at the latter, n = 16.1, twining out to be fairly 
constant. These values of n contrast with the preferred value 9 of Epstein and 
Powers" derived by a number of methods. 

SOFT-SP H ER E DENSITY 

The model may be applied to determine the density by two methods. One 
method compares the soft-sphere excess entropy with the experimental values. 
The other method compares compressibility factors. 

Figure 1 shows the soft-sphere excess entropy plotted against the dimension- 
less density w = p ( ~ / k T ) ~ ' "  for various values of n. It was computed by 
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FIGURE 1 Excess entropy for hard and soft spheres (relative to an ideal gas at the same 
density and temperature) S/Nk = (3/n)(Z - 1) - j:, (2 - 1) d In p for &/kT = 1. - 
Starling for n = co and Hoover et al. for n = 6,9,  12; ----Extrapolated. 
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286 T. GRINDLEY 

graphically integrating Hoover et aL's equation-of-state data for q'kT = 1 
utilizing the formula: 

s' = : ( Z  - 1) - r ( Z  - 1) d In p 
N K  n 0 

The equivalent quantity for hard spheres is shown for comparison.'2 The 
n = 15 curve was obtained by extrapolation from the others and is the one 
applied to the mercury data. 

S'/Nk has been computed for liquid mercury from our data at three points: 
3OoC, 0 bars; 30°C, 8,000 bars; and 150°C, 0 bars making use of ideal gas 
entropies calculated by the Sackur-Tetrode Q. (1 3). Vukalovich's tabulated 

. 

FIGURE 2 
and Hoover et at. for n = 6, 9, 12; ----Extrapolated. 

Compressibility factor for hard and soft spheres. ~ Starling for n = m 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
5
6
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



EQUATION OF STATE OF LIQUID MERCURY 287 

values have been used to extend the range from the melting point to the 
boiling point. 

At 3 0 T ,  0 bars the soft-sphere density turns out to be approximately 
N L T ~ / ~ ~ ) / ( E / ~ T ) ~ ' "  = 0.82 giving Q = 3.05 (303.15k/~)"'~ A. It is not 
possible to evaluate c and &/k from this expression since they only have 
separate significance for a combined attractive and repulsive potential. 
Using a theoretical two-parameter expression for the Van der Waals po- 
tential,14 Eo/k = 875C, co = 2.76 A and ro = 3.06 A where co is the depth of 
the potential well, c0 is the interatomic distance where the potential is zero 
and ro that where it is a minimum. These values are comparable with the 
literature values cited by Epstein and Powers. 

In Figure 2 the compressibility factor is plotted against w for both soft 
and hard spheres. Again the data is that of Hoover et al. and Carnahan and 
Starling respectively. Data for n = 15, as before, is extrapolated. 

Since, in addition to a repulsive energy, there are a number of attractive 
terms making up mercury's total energy it is not possible to directly compare 
compressibility factors. But if one assumes that all the terms except the 
repulsive one are temperature insensitive, the quantity ( V / R ) ( C ? S / ~ V ) ~  may be 
used instead. It is related to the compressibility factor by the equation : 
(V/R)(dS/dV), = Z - (3/n)o(dZ/do) and is shown for n = 12 and 15 as 
derived graphically. Values of (V/R)(dS/dV),  for mercury for the same points 
as before are shown on the graph and it may be seen that the resultingdensities 
correspond closely with those resulting from application of the excess-entropy 
method. This is in constrast to the disagreement when applying the hard- 
sphere model. 

SEPARATION OF ENERGY COMPONENTS 

Equations (1) and (2) provide two simultaneous equations from which two 
energy components may be calculated. The preceding application of soft- 
sphere theory yields a value for the repulsive energy (@,). The Van der 
Waals energy (0,) has also been calculated from the formula for the inter- 
atomic energy:" 

U ( r )  = -2.296 x 10-ssr-6 - 1.252 x 10-73r-8  
-6.487 x fO-89r- '0  - 4.234 x 10-'04r-'2, 

where V(r)  is the attractive part of the interatomic energy in ergs and r is 
the interatomic distance in cm. This means that the free-electron kinetic 
energy ( K , )  and the coulombic energy (OC) may be estimated. 

In calculating (0,) it has been assumed that the mercury atoms are on a 
face-centered cubic lattice. In this case, the relationship between the inter- 
atomic potential and the lattice energy are given by Hirschfelder et al., 
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288 T. GRINDLEY 

p. 1035 et se4.l An independent way of calculating the free-electron kinetic 
energy is from the Fermi energy' ' which may serve to corroborate the result. 
Computations have been done at the melting point. 

U may be calculated from the heat of vaporization" and is approximately 
-59,800 J;  ( Q r )  obtained graphically from Figure 2 is approximately 
10,500 J and (Oa)  is approximately - 151,800 J, all on a molar basis. Sub- 
stitution of values for U ,  (Qr), (aa), and PV in Eqs. (1) and (2) yield ( K , )  = 
882,150 J and (ac) = -800,650 J. 

Alternatively ( K , )  may be approximated by (3 /5)NzE,  which Ascarelli 
computes to be 910,000 J which is in fair agreement. 

CONCLUSION 

Computation of the same atomic density by two methods, one based on 
excess entropy and the other on the thermal pressure coefficient tend to 
validate application of the soft-sphere model to liquid mercury. It is further 
supported by the agreement of two independent estimates of the free-electron 
kinetic energy. 
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